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Numerical simulations of the stimulated Raman scattering are presented using an Eulerian 
relativistic Vlasov code. Such a code allows a finer resolution in phase space than a particle 
code and provides a better understanding of the acceleration process for the particles at 
relativistically high energy. Forward Raman scattering as well as backward Raman scattering 
are considered to illustrate the possibilities of the Eulerian Vlasov code. 0 1990 Academic 

Press. Inc. 

INTRODUCTION 

It is well known that an important obstacle to laser fusion is the production of 
high energy electrons. On the other hand, these relativistic electrons are of interest 
because of their application to laser-plasma accelerators, which have been proposed 
for the next generation of electron accelerators [l-2]. In this paper, we consider 
only electron acceleration by plasma waves generated through laser-plasma inter- 
action and more precisely by stimulated Raman scattering (SRS). This scattering 
process has been isolated from other mechanisms of acceleration in several 
experiments showing the generation of fast electrons (see, for instance, Refs. [3-53). 

Numerical simulations have also been performed predicting the production of 
fast electrons by Raman scattering. These simulations involve P.I.C. codes [3, 5, 71 
or the waterbag model [S]. Nevertheless, there is still the need to improve the 
understanding of the relativistic particle wave trapping and acceleration, of which 
the particle simulation gives only a very coarse description. 
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On the other hand, the available vector computers point to the reactivation of the 
so-called Eulerian Vlasov codes [S-lo] which afford a high phase space resolution. 
Recently, striking results have been obtained in the precise mechanism of nonlinear 
evolution of phase space holes associated with strong nonlinear plasma oscillations 
(two stream instability or Bernstein-Greene-Kruskal waves). These simulations are 
conducted over a long time (about 103w; ’ ) performing the direct integration of the 
one-dimensional collisionless Vfasov-Poisson equations. 

The central goal of the paper is to present a Vlasov code which affords the 
required resolution to discern the phase space dynamics of electrons accelerated by 
SRS. In Section 2, we present an extension of the one-dimensional Vlasov code to 
the electromagnetic relativistic case, providing a model suitable for describing 
Raman scattering. The simulation results are presented in Section 3 for the forward 
Raman scattering (FRS), while the backward Raman scattering (BRS) is discussed 
in Section 4. 

2. THE EULERIAN VLASOV CODE FOR SRS 

2.1. The Electrostatic Vlasov Code 

First, let us recall briefly the main features of a one-dimenional electrostatic 
Vlasov code. We want to solve the Vlasov equation for the one-dimensional 
electron (charge -e, mass m) plasma distribution function f(x, px, t): 

af Px af -g+--z-eE.x~=O 
ap, 

(where the longitudinal electric field E, is given self-consistently by the Poisson 
equation), starting from a given initial condition f (x, pX, t = 0). The best way is to 
separate the integration in both directions of the phase space plane [ 1 l-121; this 
is the well-known splitting scheme. We have recently demonstrated [lo] that this 
scheme is equivalent to solving the Vlasov equation (1) exactly, when the electric 
field E,(x, t) has been replaced by a succession of Dirac pulses E,*: 

E,*(x, t)=Ex(x, t)ATz6(t-t,+,,,) (2) 
n 

with t,=nAT, tn+L,2=(n+1/2)AT. 
Denoting t;+ ,,2 and tn', ijz as the time before and after the Dirac pulse, the 

integration during the time interval AT from t, to t,, i is straightforward and can 
be divided into three steps. 

Step Al (t, -C t < t;+ i,*). We have E,* = 0 and 

f(%Px, t;+l,z)=f 
P,AT 

x---y px, t, m2 . 
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Step A2 (t=t,,+,,* ). Computing the electric field at time t;+ ,,2 by substi- 
tuting f(x, pI, t;+ ,,2) in the Poisson equation, we have 

fk ??x, tn’t l/2 )=.0x, P, + e AT E.&G t,+ I/z), t,;+ I/z). (4) 

Note that E,T(x, t;+ ,,2) = EX(x, t,‘+ ,,2), since Poisson’s equation involves only 
jfdpx. 

Step A3 cl,‘, ,,* < t < tn+ 1 ). We repeat Step Al starting from f(x, px, t,t,l,2) 
and obtaining f(x, px, t, + 1 ). 

From a numerical point of view, this scheme is equivalent to integrating Eq. (1) 
along the characteristics and is correct to the second-order (AT)’ [ 111. From a 
physical point of view, the fact that (3) and (4) give an exact solution of Eq. (1) 
with the replacement of E, by E,* provides some interesting information on the size 
of AT, as already pointed out in [lo]. For instance, linearizing (1) with E,* around 
an homogeneous equilibrium (i.e., f(x, pl-, t) = n,Fo(px) +fi(x, px, t)) and perfor- 
ming the usual Laplace (t + s)-Fourier (x -+ k) transforms yields 

= 
5 dp.v - m s - ikp,/m 

Due to the appearance of the sum C, on the 1.h.s. of (5), the plasma dispersion 
function cannot be recovered. But, since we know that the frequency spectrum of 
the electric field does not exceed a few wp (plasma frequency), choosing AT such 
that op AT e 1 results in a zero contribution for all terms of the sum on the 1.h.s. 
of (5), except for II = 0, which recovers the usual Landau dispersion function. 

Now, we have to consider the problem of effecting the shifts (3) or (4). Cubic 
spline interpolations have been used [13]. It can also be pointed out that during 
each time step, the Vlasov equation takes on the form of an advective equation 
(one over x, one over p,) and antidiffusion methods can be used, leading to 
flux-corrected transport codes (FCT). Details on this numerical code have been 
given in Ref. [14]. On the other hand, the fact that a shift can be expressed in the 
corresponding Fourier space by simply changing the phase, suggests the use of the 
fast Fourier transform (FFT). This last code has been used to study the nonlinear 
behaviour of BGK waves [9, lo] and is found to be extremely stable over time of 
order 1030; ’ . 

The question, what is the best code, is still an open question. But detailed com- 
parisons between the cubic spline code and the FFT code are now available [15]. 
Although both codes are extremely stable, up to 2,700 w;’ and need about 
the same CPU time, better energy conservation and smaller storage memory 
requirements point to the use of the cubic spline code. 
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Finally, let us point out that every code requires a phase space discretization of 
the distribution function. Dividing the momentum space into N, cells between 
-pm,, and + P,,,(momentum cutoffs) and the length L of the plasma into N, 
cells, requires N,N, memory words. This memory requirement may be huge and is 
one of the main limitations of Eulerian Vlasov codes, especially if we want to 
extend it to l$D (one spatial dimension, 2 velocity dimensions) or 2D systems. For 
this reason, in the next paragraph, we will consider only a 1D Vlasov code. 

2.2. An Extension to the Relativistic Electromagnetic Case for SRS 

When an electromagnetic wave interacts with a plasma, the oscillatory electric 
field is perpendicular to the direction of propagation and produces only a quiver 
velocity. Charged particle acceleration can be achieved by a mechanism producing 
a longitudinal field. In Raman scattering, the ponderomotive force drives a large 
amplitude plasma wave along the laser wavevector direction and produces trapped 
electrons with very high momenta. To model this, we consider an infinite 
homogeneous plasma of density n,, with a laser wavevector in the +x direction: we 
specialize to wave propagation in one dimension, i.e., V = P,a/ax, all field quantities 
being function of the space variable x only. Choosing the Coulomb gauge V. A, the 
vector potential A is in the perpendicular (transverse) plan, i.e., A = A,. Recalling 
that E = -V4 - aA/& we have 

l in the transverse plane, 

l in the wave direction. 

E, = -a~lat (6) 

E, = - ad/ax. (7) 

The electron distribution function F(x, p, t) obeys the relativistic Vlasov equation 

E+@-e(E+uxB)F=O 
at my ax ap (8) 

with the relativistic factor y = (1 + p*/m*c*)“*. 
As a matter of fact, the distribution function can be split into two parts: 

l a nonrelativistic part depending on pI and x, 
l a relativistic part depending only on pX and x. 

The relativistic part occurs only for a small population of electrons which have been 
accelerated to high velocities by the trapping fields. For the nonrelativistic part, we 
have y N 1. Therefore we consider the following class of exact solutions of Eq. (8): 

ST P, t) = d(p, - eA)f(x, px, t), (9) 
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where 

f(x, p,, t) = j dp, F(x, p, t) is the reduced distribution function, 

while pI - eA is the transverse canonical momentum. Note from Eq. (9) that the 
effective transverse motion of the particles is “cold.” From the moments of F, and 
noticing that for the nonrelativistic part y N 1, we get the nonrelativistic version of 
the canonical transverse momentum conservation: 

uI = eA/m, 

where u, is the transverse fluid velocity. 

(10) 

For simplicity, the electric field E, is in the y-direction (E, = O,E,) and B in the 
z-direction (B = BZ@;) (see Fig. 1). We have also uI = z.QY. In the present geometry 
the function f(x, p,, t) defined in (9) satisfies the one-dimensional Vlasov equation: 

-+---e(E,+ulB,)~=O. 
af px af 
at my ax 8th 

Combining (10) and (6) u,, satisfies 

au y- eE at - -& I" 

(11) 

(12) 

The electrostatic longitudinal self-consistent field E, given by Eq. (7) obeys 
Poisson’s equation with ions forming a fixed neutralizing background n,: 

a24 e 
Q=; C%(X, t)-%I, 

0 
(13) 

FIG. 1. Components of the electromagnetic fields. 
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where n,(x, t) is the electron density: 

n,(x, t) = 1’: fk px> t) dpr (14) 

The transverse electromagnetic field obeys Maxwell’s equations, 

aB,- aE” _ . . 
at ax 

EY- 
at --c ;,,-c;l 2% J ?, 

(15) 

(16) 

where J, = -en,(x, t) z+(x, t) is the current density in the y-direction. For com- 
putational purposes, it is convenient to define 

E’ =E,+cBZ, 

so that Eqs. (10) and (11) can be written 

which allows as to solve Maxwell’s equation along their vacuum characteristics, 
xfct=const [16]. 

The way to solve the relativistic electromagnetic Vlasov equation is essentially 
the same as the electrostatic case and involves the three steps Al, A2, A3 described 
above. In Step Al (or A3) we just have to introduce the relativistic factor, so that 
(3) must be replaced by 

f(-? Px, t,+1,2) =f x-c px, t, ( my 2 > 
. 

In step A2, we have to add the ponderomotive force: 

f (4 Px, t,= I,* ) =f [x, ~.x + 4E, + u,vB;) AT, t,y+ ,,J. 

This step requires the knowledge of the fields at t;+ ,,2. . the electrostatic field E, not 
being affected by the shift A2 can be computed by solving Poisson’s equation 
(13)-( 14) at the end of step Al. But the necessary knowledge of the electromagnetic 
fields E * at time t, + 1,2 suggests solving Maxwell’s equations (17) alternately with 
the Vlasov equation between t,- 1,2 to t, + 1,2 in a leapfrog scheme, in such a way 
that the contribution of the source terms in (11) and (17) are centered in time. Thus 
we again have three steps, denoting t; and t,’ as the time before and after the 
application of the source term--s;‘J, considered as a Dirac pulse: 
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Step Bl (t,- ,,2 6 t < t;). We solve (17) without source terms: 

E’(x, t,)=E’ nfc$ tHp,,, ( ) . 

437 

(18) 

Step B2 (t = t,). 

E’(x, t,‘)=E’(x, t,)-AT8,‘J,(x, t,). 

Step B3 (t,’ < t < t n+ ,J. We repeat Step Bl and obtain the fields 
E’(x, t,+ i,*) and consequently Ey and B, at time t,, ,,2 so that Step A2 can be 
achieved (see Fig. 2). 

Since c is a constant, the advective equation (18) could be solved by using grid 
spacing Ax = c AT/2. But we want to be free of the choice of AT with respect to Ax, 
so that Fourier interpolation has been used in the present code. 

Finally, Eq. (12) is solved between t, and t, + I using the time centered scheme 

u,(x, fn+d=+, t,)-i AT E+(x> t,+,,d+E-(x2 tn+l,J 
2 

This code is equivalent to integrating the distribution function along the charac- 
teristics and is correct to the second order in AT (see Appendix). 

In our numerical experiments, we use normalized quantities: t, x, uy, p, are 
normalized respectively to o; ‘, 1, = c/op, c and p0 = mc, where op in the plasma 
angular frequency. The fields E,y or E, are normalized to o,p,/e and the density 
to no. The wave vectors k are normalized to o,,/c. 

Periodic boundary conditions are assumed. Although these conditions are some- 
what far from real plasmas, they are used to exhibit the adequacy of our code in 
modeliing SRS behaviour. The avantage of a periodic plasma as a test problem is 
that a rather small number of modes are needed. The simulations presented here are 
performed with a phase space grid of size N, N, with typical values N, = 64 and 
N, = 512 or 1024. The time step is of order 0.0330.06 o; ‘. Using a grid of 64 x 1024 
or 65,636 entities = (“particles”), the CPU time is less than 2 PS per time step per 
entity (“particle”) on a CRAY-2 computer. This code is optimized to make full use 
of vector facilities of CRAY-1-S or CRAY-2 computers. 

Bl Bt B3 Bl B2 B3 

FIG. 2. Time stepping of Vlasov and Maxwell schemes. 

581/W/2-12 
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3. THE FORWARD RAMAN SCATTERING PROBLEM (FRS) 

The SRS instability is a parametric instability involving three waves: the incident 
electromagnetic wave, here referred to as the “pump” wave (w,, k,) which drives 
two unstable waves; a scattered electromagnetic wave (o,, k,); and an electron 
plasma wave (w,, k,). The Raman instability occurs when the usual matching con- 
ditions hold, 

o,=o,+o, (19a) 

ko = k, + k,, (19b) 

with the dispersion relation for the electron plasma wave given by the Bohm-Gross 
frequency o2 = 0; + 3k2ufh and that for the two electromagnetic waves by 
o2 = wi + k2c2. The matching conditions (19) can be satisfied only if n, < ncrit/4 
when ncrit is the critical density above which electromagnetic radiation will not 
propagate. SRS instability is discussed in some detail in Ref. [17]. 

Due to the periodic character, we can select the different wavenumbers to obtain 
either forward scattering (FRS) with 0,/k, > 0 or backward scattering (us/k, < 0) 
or any combination we want to study. 

Let us first consider one case leading to FRS. 

3.1. Initial Condition 

We start with an initial homogeneous Maxwellian distribution with a thermal 
velocity u,,,/c = 0.17 corresponding to a temperature T, = 15 keV, with a small frac- 
tion (~1) of relativistic particles with T, = 100 keV (see experiments described in 
Ref. CSI), 

Fo(p,) = (1 - cr)(2zmT,)-“2 exp 

+ ctC exp 
-mc2(y - 1) 

T2 

with c1= 0.05, C is a normalization constant so that j F0 dp, = 1. y is the Lorentz 
factor. The cutoff in the momentum space is +p,,, = +6.5 mc. The plasma is 
embedded in a periodic box of length L = 10.47 c/w, (or 61.1 &, where & = vt,,/wP 
is the Debye length). 

From now on, all quantities will be presented in the normalized units defined in 
2.2. The initial (pump) electromagnetic wave is taken as 

E, = E, cos k,x 

koEo B,=- cos k,x. 
00 
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We recall that k,, is normalized to oP/c, o0 to o,, and E, to o,mc/e; choosing 
k, =2.4 and E,=0.32 we obtain 

coo = (1 + k;)‘* = 2.6. 

The quiver velocity (normalized to c) is 

u osc = E,,/o, = 0.123. 

(For a 10.6 pm Co,-laser the corresponding intensity in 1.8 x lOI W/cm2). The 
density as compared to the critical density is 

no/n,,, = On2 = 0.15. 

With this choice, the prediction for FRS is 1.53 for the downshifted (Stokes) scat- 
tered frequency (with a wave number 1.16) and a Bohm-Gross frequency 1.07 (with 
a wave number 1.24). 

It must be pointed out that a periodic code can handle only discrete wavenum- 
bers which must be multiple of a fundamental mode 271/L = 0.6 (since L = 10.47, see 
above); thus, the electron distribution function is given a small initial perturbation 
on the mode k,: 

k, = 2(271/L) = 1.2, coresponding to o, = (1 + 3k3u:,,)‘/2 = 1.061. 

These values are very close to the Bohm-Gross parameters mentioned just above. 
Consequently, we forcast the appearance of the Raman instability with the scattered 
mode 

k, = k, - k, = 1.2 corresponding to w, = (1 + kf)‘/* = 1.562. 

For these selected wavenumbers, the mismatch from (19a), do = o, - 
(wO - 0,) = 0.024, is sufficiently small. The total energy is 0.071. The relative varia- 
tion of this quantity over the entire run (up to 8250-l) is less than 2.10-3. The 
density conservation (i.e., jfdx dp,) is better than 10J8. 

3.2. Energy Evolution and Manley Rowe Partition 

Figures 3a, b, c, d, show the different energies (in mc* units) as a function of 
time: the pump electromagnetic energy (mode k,) the electromagnetic scattered 
energy (mode k,), the electrostatic plasma energy (mode k,) and the plasma kinetic 
energy defined as: 

The electromagnetic energy is defined as 
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E E I I I I I I I I I I 
0.05- 0.05- a) Pump a) Pump 

0.04- 0.04- 

0.03- 0.03- 

0.02- 0.02- 

0.01- 0.01- 0 0 ;: ;: #jj 1 #jj 1 

0 0 300 600 300 600 

OPT OPT 

E I I I I I 

b) Scattered wave 
0.03- 

0.02 - 

0.01 - 

OO 
I I I I I 

300 600 

OPT 
0.0081 I 

EC : 
I I I I , 0.036 

C) Electrostatic E 

OL 300 600 

FIG. 3. (a) Time evolution of the energy of the pump for the FRS case. (b) Time evolution of the 
energy of the scattered wave for the FRS case. (c) Time evolution of the electric energy for the FRS case. 
(d) Time evolution of the kinetic energy for the FRS case. 

i.e., the electromagnetic energy inside the plasma. A Fourier transform of the output 
data is used to compute the energy for the various mode. 

At the first stage of the evolution, Figs. 3b and 3c indeed exhibit an exponential 
growth related to SRS instability. The theoretical energy growth rate, imputed from 
linearized fluid equation [6], is 

y $2 kvosc - 4 ~=0.0405, 

is found very close to the numerical value obained from a logarithmic plot (0.040). 
After the first stage of the instability, the curves of Figs. 3 exhibit an oscillatory 

behaviour in which energy is transfered back and forth between the pump and the 
scattered and plasma waves, like a parametric 3-mode coupling. The first saturation 
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of the electrostatic energy as well as the scattered energy is therefore related to 
pump depletion at time wP t = 150 and can be compared with the Manley-Rowe 
partition obtained form the envelope equation of the 3-wave coupling process (see, 
for instance, [S]). 

The action conservation between pump and scattered energy is 

Wo + .!I3 = const. 
00 a, 

0.5 , , , , , ) , ( , 

q,T=O 
-0.5 

- 

-3+-J--q&* -3.51 ’ ’ ’ ’ ’ ’ ’ y 
y-l5 

2 3 4 s 

0.5 I, 
o,5; ’ ,+y , , , , ,‘;I, 

q,T = 240 q,T = 31.5 
-0.5 - -0.5 

T -1.5 (lst maximum) - -1.5 (2nd maximum) 

-2.5 - 

-3.5 fi--crl-I I 
0 ‘v+ 2 3 4y-15 0 2 3 y15 

0.5 -1 0.5 1-1 

q,T = 485 a,T = 705 
ii 

FIG. 4. Plots on a logarithmic scale of the distribution function as a function of energy for the FRS. 
Notice the small scale oscillations related to the microstructure of the Vlasov equation. The low level 
of these oscillations is artificially enhanced by the logarithmic scale. 



442 GHIZZO ET AL. 

At time o,t= 0 (i.e., W,=O) the intitial action is 0.0197, while at saturation 
(w,t = HO), the correspondng value is 0.0187, assuming complete pump depletion, 
In the same way, the action for the electrostatic energy at saturation is 0.0216, 
providing a good agreement between the theoretical prediction of a 3-mode 
coupling mechanism and the simulation results. In fact, the prediction for SRS with 
w0 = 2.6 and k0 = 2.4 includes two other scattered lights: an upshifted (anti-stokes) 
radiation (i.e., CO~=O,,+O,) with a wavenumber 3.45 and a backward scattered 
light with a wavenumber -0.73. But these wavenumbers lie too far from the 
accessible multiples of 2x/L and cannot be excited. 

After the first saturation of the electrostatic energy, further behaviour is no longer 
periodic, and in particular, an important increase of the kinetic energy and a 
corresponding decrease of the pump energy are to be noticed. These phenomena are 
connected to the acceleration of particles, as seen in the next paragraph. 

3.3. Distribution Function and Phase Space Representation 

Figure 4 shows the spatially averaged distribution function at w,t = 0, then 
wP t = 150 ( 1st maximum of electric energy), 240 (1st minimum), 315 (2nd maxi- 
mum), 425 (2nd minimum), and 705 (4th minimum) as a function of the relativistic 
energy y - 1, for particles with positive velocities (in the direction of the incident 
wave vector). The most important feature is the appearance of a suprathermal 
population in the range y - 1 z 2 - 4 (i.e., 1 to 2 MeV). The detailed mechanism of 
the acceleration can be observed in the x -px phase space in Fig. 5. 

Figure 5 shows the contour plot in the upperhalf of the phase space (x-p,) 
plane (p, > 0) together with 3D surface representation of the distribution function 
in the x -px plane, at different time values. Since the accelerated particles 
correspond to small phase space densities, only contours for f< 3 1O-3 and 3D 
representation for f< 6 1O-3 have been drawn. The first Raman oscillation (from 
oP t = 0 to oP t = 240) has been represented in Figs. 5a, b, c. The end of the run is 
shown in Fig. 5d. 

These figures exhibit clearly the acceleration of positive velocity particles followed 
by trapping and formation of vortices around a momentum corresponding to the 
plasma wave velocity uI = o,/k, = 0.88 or ps = 1.9 (corresponding to y - 1 = 1.14 in 
Fig. 4). At the end of each Raman oscillation, a beam is decoupling from the bulk, 
then a new acceleration occurs. We have estimated the beam density (Fig. 6) and 
the beam energy as a function of time according to 

FIG. 5. Phase space plots (f< 3 x 10m3) and the corresponding 3D plots (f<6x 10m3) of the 
accelerated particles for the FRS. The arrow indicates the momentum ps corresponding to the phase 
velocity. The 3D plots are trumcated for f above 6 x lo-‘. 
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FE. 5-Continued 
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q,T = 210 

c; 

6.51 I ( I I I I I I I I I I 1 

q,T = 240 
i 

0) 

X 

445 

FIG. 5-Continued 
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6.5 , , , , , , , , , , , , 

(&T = 660 

FIG. S-Continued 
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FIG. 6. Time evolution of the high energy beam density for the FRS case. 

and 

~,eam(f) =; jPmax (Y - 1 If@, P,, f) dx dp.,. 
Pm 

The time behaviour of sbeam in nearly the same as abeam. After two periods, these 
quantities reach a quasi-asymptotic value: The beam has about 0.3% of the total 
number of electrons but contains about 10% of the total energy. 

4. THE BACKWARD RAMAN SCATTERING CASE (BRS) 

We now consider the BRS (o,%/k,<O). In that case, the lower phase velocity of 
the plasma wave involves heavier Landau damping. Thus we require a smaller 
thermal velocity. A first series of experiments was conducted with a single tem- 
perature Maxwellian function with u,~ = 0.08~ (T= 3.2 KeV) in a box of length 
L = 8.92 (or 111.52,). The cutoff is now fp,,, = + 2. The initial pump wave is 

ko=3x2n/L=2.113, corresponding to = w,, = dm = 2.338 

and E, = 0.28 (u,,,/c = 0.108 and n, = 0.18n,,it). We select the plasma wave number 
k, = 4 x 2n/L = 2.818 by slightly perturbing the distribution function. For this 
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, I I I 1 I 

a) Pump energy 

d 
0 1’ 

0 100 200 ;O; 400 500 600 
P 

c) Mode plasma n=4 
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0.025 I I I I I I 

6 b) Scattered energy 

o.ooi!LJ 
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0.022CI-j 

d) Kinetic energy 
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‘JJPT 

1 elMode plasma n=2 
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FIG. 7. (a) Time evolution of the pump energy for the BRS case (U th = 0.08). (b) Time evolution of 
the scattered energy for the BRS case (u *,, = 0.08). (c) Time evolution of the energy of the plasma mode 
with wave vector k, = 4 x 2x/L for the BRS case (Y,~ = . 008). (d) Time evolution of the kinetic energy of 
the plasma for the BRS case (u,~ = 0.08). (e) Time evolution of the energy of the plasma mode with 
k:= 2 x 27r/L=k,/2 (11,~ =0.08). 
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wavenumber, we have k,id = 0.22, so that the Landau damping is negligible. The 
corresponding frequency is 

o,=(l +3k,2u;h)“2= 1.073. 

The scattered wave is now 

k,y=ko-k,= -;= -0.705 (corresponding to CD, = 1.223). 

The mismatch do = o, - (wO - 0,) = - 0.041 remains small. 
In Fig. 7 we present the different modes which are present in the plasma. 
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FIG. 8. Plots on a logarithm scale of the distribution function as a function of energy for the BRS 

(U,k = 0.08). 
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Figures 7a, b, c show the pump energy (k,), the scattered energy (k,), and the elec- 
trostatic plasma energy (k,). The kinetic energy is shown in Fig. 7d. In addition, in 
Fig. 7e we plot the other nonzero mode which developed during the evolution: the 
electrostatic mode k: = 2 x 271/L = kc/2 = 1.409. For this mode, we note that the 
matching conditions hold with a scattered forward wavenumber k; = +2n/L = 
+0.705 (= -k,) and the pump (oO, k,). Indeed, we have 

o0 - ob = 1.319 as compared with w: = 1.223 (mismatch 0.096). 

For these intitial conditions, BRS as well as FRS are present. In fact, we have 
conidered only an initial excitation of BRS instability. Even if FRS has not been 
initialy excited, it has grown but with a relatively low level (see Figs 7c and 7e). In 
that case, BRS remains the dominant phenomena. 

During the first stage of BRS (i.e., between wP t = 0 and o, t = 65, corresponding 
to the first pump depletion and the corresponding scattered or electrostatic energy 
saturation) the Manley-Rowe partition can be verified: 

l between the pump and scattered energy, the action is 0.01677 at wP t = 0 and 
0.01659 at T= 65; 

l between the pump and electrostatic energy: the action is 0.01677 at oP t = 0 
and 0.01674 at w, t = 65. 

Figure 8 shows the spatially averaged distribution function as a function of y - 1 
for wP t = 0, 100, 250, and 600. The phase velocity is smaller than the FRS case. I.e., 
u) = 0.38 ( = 4.75 V,,.,) corresponding to p1 = 0.41 or y - 1 = 0.081. Contrary to FRS, 
the distribution function exhibits a quasi-plateau extending to y - 1 z 0.4. 

The formation of this structure can be viewed in the x -px plots (Fig. 9): since 
we have excitated the mode k,=4 x 271/L, we forecast the appearance of a four- 
vortex structure. But the presence of mode kc/2 generated by FRS will produce a 
fusion of the four-vortex into a two-vortex structure, followed by a cleaning of the 
microstructure, to end up with a quasi homogeneous plateau at wP t = 600. 

A second series of experiments is conducted by increasing u,,, up to 0.11 (the 
other parameter being unchanged excepting the cutoffs -kpmax = f 3) corresponding 
to k,A, = 0.31. For this value, it may be conjectured that the Landau damping is 
now strong enough to significantly reduce the level of the electrostatic mode k, with 
respect to the FRS mode k: = k,/2, after a certain time. In Fig. 10, we plot the 
phase space contours at time wP t = 300, 340, and 400 showing indeed the 

FIG. 9. Phase space plots and the corresponding 3D plots for the BRS (Q, = 0.08). Although the 
simulation is performed with pmax= 2, the upper half of the phase space plane is represented up to 
p= 1.25. The arrow indicates the momentum corresponding to the phase velocity. The 3D plots are 
truncated. 
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FIG. 9-Continued 

appearance of acceleration of particles due to FRS followed by trapping. Figure 10d 
shows the 3D plot of the function at wPz = 400. Summarizing the time history of SRS: 

- first the system starts with backward SRS instability, leading to the 1st 
electron plateau (y - 1 z 0.4); 

- then we have forward SRS appearing later, giving very energetic particles 
with y - 1 z 1.5. 

581/90/Z-13 
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d) 

FIG. 10. Phase space plots for the BRS at higher thermal velocity (uth =O.ll): (a)o,r =300; 
(b) o,t = 340; (c) w,t = 400, (d) corresponding 3D plot for o,,t = 400. 

5. DISCUSSION 

The Vlasov code provides an excellent resolution all over the phase space, 
including very low density regions. In the present problem, in which electrons are 
accelerated at high momenta, a small fraction of the particles (which cannot be 
estimated in advance) are distributed over a large region of phase space. Without 
using a prohibitive number of particles, a PIC code will only have a few particles 
to scatter about in these very low density regions. The Vlasov code provides a good 
resolution naturally, allowing a relatively economical calculation of these phase 
space low density structures, which are simply invisible in particle codes. 

Detailed comparison with particle orbit theories or Manley-Rowe relations are 
now under consideration and will be presented in a forthcoming paper. Although 
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we have restricted ourselves to FRS and BRS in a small periodic plasma, we have 
also applied the Eulerian Vlasov code to other cases of interest, such as beat wave 
acceleration (with two initial pumps o,,, k0 and or, k, ) or the inclusion of ion 
motion to take Brillouin scattering into account. 

The code has recently also been extended to the bounded case without any dif- 
ficulties. Bounded plasma models are closer to real plasma than periodic models. 
Since a longer system must be considered (about N-100 beat wavelengths) the 
number N, has to be substantially increased, but the available vector supercom- 
puters are now able to deal with such codes. 

Finally, we have considered here a simplified macroscopic description for the per- 
pendicular motion of the particles, assuming that the mean velocity u, 4 c. Whether 
a microscopic description would significantly alter the dynamics especially for the 
strongly accelerated particles is still an open question. The answer could be given 
by extending our 1D Vlasov model to a full l:D one. I.e., considering a distribution 
function f(x, p,, p,), the basic numerical steps as described by (3t(4) are 
unchanged. The problem is only in memory size and CPU time. But again it is still 
within the capacity of the available supercomputers. 

APPENDIX 

To show how the numerical scheme presented in Section 2.2 integrates the 
Vlasov equation (1 l), consider first what happens to the distribution function 
as the operator (B/2) f,fi/2 is applied to the initial distribution function 
fJx, px, t = n AT); I?/2 and fix denoting respectively the shift in position and in 
momentum. Thus we obtain 

f-(X> Px> tn + 1) =f(% P,? t, 1 

with 

and 

where 

x=x-$AT-e(E:+u,*B:) $+ O(AT~) 

P,=p,+e(E,*+u,*B:) AT+O(AT3), 

(20) 

(21) 
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By using the relation (12) we have 

u.~=~(u”,+u’l+1)=u:+1+~E~+‘;2AT (22) 

and, therefore, 

x=x-~-q(E:+uC+1B:)~+O(dT3) (23) 
my my 

and 

&=px+e(E,*+u;+’ B:)dT+~E:BfdT’+O(dT?). (24) 

On the other hand, let us con’sider the equations describing one-dimensional 
particle motion, 

dx -=v 
dt x 

1 = -e(E, + u,B,) 

and, again, Eq. (12). 
From (25) we can write 

yzxn+l 
AT AT 

-y”+1~2AT=Xn+1_v~+1--v~-, x 2 2 

From (26) and since 

(25) 

(26) 

(27) 

(28) 

we have 

v”=v~+‘+~AT(E~+‘;l+u;+~‘~~~+~.2) 1- 
x 

[ (v::::“)‘l”i’ (29) 

which leads to 

y=xn+l- pz+‘AT e 
my 

-;;;;i(E:“,‘+.:““2~~+l,2~~, (30) 

where we have replaced v, by pJmy. 
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A similar analysis for the momentum variable px leads to 

p:=p”r+‘+e(E:+“2+u~+‘B:+“2)dT 

+~E;+1%l+~-2AT2+*(AT3). (31) 

By comparing Eqs. (20), (21) and (30), (31), we see without difficulty that the 
splitting scheme integrates the distribution function along the characteristics 
correctly to second order in AT. 
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